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1 Introduction

The environmental impact of digital technology has become an increasingly ur-
gent concern, particularly as the internet’s energy demands continue to grow
[citation needed]. As essential components of the digital economy, websites and
web applications contribute significantly to global energy consumption and car-
bon emissions [citation needed]. However, accurately quantifying these impacts
remains challenging due to the diverse ways they are used and the inherent
complexity of web infrastructure.

In this paper, we present the Cardamon Web Model (henceforth CWM),
named after the Cardamon project, an Innovate UK-funded initiative focused
on developing tools to assess and reduce software-related emissions. The model
is designed to estimate the power consumption and associated carbon emissions
of a single webpage during a typical user interaction. To facilitate the estima-
tion of entire web applications the model can be applied to a representative set
of pages that capture the app’s overall functionality.

The CWM builds upon the Software Carbon Intensity (SCI) specification
[citation needed], taking a bottom-up approach to calculating energy consump-
tion, rather than a top-down methodology like that of other models e.g. Sus-
tainable Web Design Model (SWD) [citation needed]. This allows for a
more granular analysis of device components that consume energy during web
interactions, resulting in greater accuracy and actionable insights.

This paper is organised as follows: Section 2 Software Carbon Intensity;
introduces the SCI specification. Section 3 The Cardamon Web Model;
describes the CWM in general terms, outlining its theoretical framework and
principles, relating it back to the SCI. Section 4 Functions, Parameters &
Assumptions; describes the energy consumption functions, constants and as-
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sumptions that underpin key calculations. Section 5 Reference Devices; dis-
cusses reference devices used in the implementation. Section 6 User Interac-
tion; introduces user interaction strategies. Finally, Section 7 explores Future
Work and potential developments to enhance the model’s scope and applica-
bility.

2 Software Carbon Intensity

The CWM builds upon the principles of the SCI specification by applying it to
the domain of web applications. The SCI is a ISO standard [citation needed]
designed to provide a standardised methodology for assessing and comparing
the environmental impact of software [1]. Equations (1 - 4) describes the spec-
ification in mathematical terms.

SCI = (O +M) per R (1)

where: O = operational emissions (i.e. use-phase).
M = embodied emissions (i.e. production and disposal phases).
R = functional unit (e.g. API call, user interaction, etc).

O = E · I (2)

where: E = energy consumed.
I = region specific carbon intensity.

M = TE · TS ·RS (3)

where: TE = total embodied emissions of the hardware.
TS = share of the total lifespan of the hardware reserved for use by the

software.
RS = share of the total available resources of the hardware reserved for

use by the software.

TS =

(
TiR

EL

)
(4)

where: TiR = the length of time the hardware is reserved for use by the soft-
ware.

EL = the expected lifespan of the equipment.

Throughout this paper we relate the CWM back to this specification by using
the same terminology and mathematical notation.
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3 The Cardamon Web Model

In this section we explore how the CWM extends the SCI specification, applying
it to web applications.

We start by breaking a web application into three distinct sub-systems, mod-
elling each individually to estimate their energy consumption. The sub-systems
are as follows:

• Front-end; the end-user device.

• Network; the routers, switches etc used to connect the end-user device
to the various servers used to deliver the website.

• Back-end; the computers and associated infrastructure used to host and
deliver the content to the end-user device. These are usually computers
within a data-centre.

Operational and embodied emissions are calculated for each sub-system during
an interactivity test which is conducted on physical reference devices for the
front end.
Equation 5 shows how we reformulate the SCI from equation 1 to include these
high-level sub-systems.

SCIweb =
∑
s∈S

Os +Ms (5)

where: S = (f , n, b) = set of system components; front-end (f), network (n)
and back-end (b).

Os = operational emissions of sub-system s.
Ms = embodied emissions of sub-system s.

Let’s look at these system components in more detail, starting with the front-
end:

3.1 Front-End

To estimate the energy consumption associated with end-user devices, our model
accounts for the diversity among end user devices by categorising them into dis-
tinct categories such as desktop, mobile, and others. Each category represents
a broad classification of devices that share similar characteristics in terms of
hardware and usage patterns.

For each category, we define a reference device that serves as a representative
model (see section 5). These reference devices are further decomposed into their
constituent hardware components, such as the CPU, network adapter, screen,
and others. Each hardware component has an associated energy consumption

3



function which takes as input a set of metrics specific to the component (CPU
utilization, data transfer etc).

Metrics for each component are gathered directly from the reference devices
during an interactivity test in which a set of actions are performed on the web
page. This aligns with the functional unit R in the SCI framework.

Interactivity tests are defined at the level of individual web pages rather than
entire web applications. This design choice effectively makes an interaction
within a single-page the fundamental building block of CWM. These blocks of
interaction can be tested independently as single page measurements but also
pieced together to model specific user journeys as well as entire websites and
web applications by identifying representative pages and interactions that cap-
ture the app’s overall functionality.

Once metrics have been gathered during the interactivity test we can use them
as parameters to our component energy models to estimate the breakdown of
system energy. We can then optionally use this information along with user
analytics to scale the estimated energy consumption by the number of hits of
that type originating from each device category, in each region - building a rep-
resentative estimation of end user emissions.

Lets begin describing this method mathematically from the SCI specification.

SCIf = Of +Mf (6)

where: Of = total operational emissions across all end-user devices.
Mf = total embodied emissions across all end-user devices.

To apply the front end portion of the CWM to the SCI specification we must
unpack both the operational and embodied emissions terms (Of and Mf re-
spectively).

3.1.1 Operational Emissions

Expanding the operational emissions term Of to include each device category
and scaling by the number of hits results in:

Of = If
∑
d∈D

hd(Ef,d + Ei,d) (7)

where: If = average carbon intensity across all end-user devices.
hd = hits originating from device category d over reporting period.
Ef,d = energy consumption of the d’th category of user-device.
Ei,d = idle energy consumption during the interactivity test.
D = set of user device categories (e.g. mobile, desktop).
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Even in this form, the connection to the SCI specification is still very clear. The
terms I and E from equation 2 are present but have been expanded in the case of
energy consumption to include idle consumption Ei and active consumption Ef .

We can further expand these terms like so:

Ei = t · ei (8)

where: t = elapsed time of the interactivity test.
ei = idle energy consumption of the reference device for the category

under consideration.

To expand the active energy consumption we must include the hardware com-
ponents considered for each device category and the metrics gathered for those
components during the interactivity test we can:

Ef =
∑
c∈C

fc(Mc) (9)

where: C = set of hardware components {CPU, networkadaptor, ...}.
fc = energy consumption function for component c.
Mc = metrics associated for component c.

User analytics often contains information about where, geographically, each hit
to the web page originated from. This data can be used to calculate the average
carbon intensity across all hits. However, in the absence of this user analytics
data the global average carbon intensity can be used instead.

If =
∑
r∈R

qrIr (10)

where: q = proportion of views originating from region r.
I = carbon intensity of region r during the test.
R = Set of all geographical regions.

3.1.2 Embodied Emissions

Mf = t
∑
d∈D

hdmd (11)

where: t = elapsed time of the interactivity test.
hd = hits originating from device category d over reporting period.
md = embodied emissions rate of end-user device category d.
D = set of user device categories (e.g. mobile, desktop).
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Equation (11) shows how the total embodied emissions of end-user devices is
calculated in the CWM. Our formulation differs from that of the SCI specifi-
cation but is completely compatible with it when we expand the definition ofmd.

Using the terminology defined in equations 3 and 4 and making the assumption
that during the interactivity test the device is used exclusively for that task we
can expand md as follows:

md = TEd

(
TiRd

ELd

)
RS (12)

Under the assumption that the device is used exclusively for the purpose of
rendering the web page during the interactivity test equation 12 simplifies to:

md = TEd

(
TiRd

ELd

)
(13)

It is important to note that the CWM in it’s current form is likely to overes-
timate the embodied emissions of the front-end due to the above assumption.
Modern devices are likely to be performing many other tasks whilst rendering
a web page.

3.2 Network

Unlike the front-end and back-end subsystems, where constituent hardware
components can be modelled using usage metrics, the network infrastructure
presents unique challenges. This is due to the fact that most of the infrastruc-
ture is not accessible comprising of elements such as undersea cables, switches,
routers, internet exchange points etc. Consequently, a top-down modelling ap-
proach is necessary to estimate energy consumption.

To model the energy consumption of the network infrastructure, we rely on esti-
mates derived from academic research and established models. One such model
is the Sustainable Web Design model, which provides an estimate of the energy
consumed during data transfer over the global networking infrastructure. This
model calculates energy consumption by dividing the total estimated energy
consumption of the global networking infrastructure (310 TWh per year [cita-
tion needed]) by the total estimated data transfer of the internet (5.29 ZB per
year [citation needed]). This results in an average energy consumption of:

0.059 =

(
310x109

5.29x1012

)
(14)

This figure aligns with estimates from other studies, such as the work by
Hanna Pihkola et al. (2018) [citation needed], which estimated that the energy
consumption per gigabyte would be less than 0.1 kWh by 2020.

We acknowledge the complexity of network emissions estimations and the
limitations of an ’emissions per byte’ approach. In the absence of an accepted
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standard for network emissions we chose to adopt this approach rather than
ignore network emissions completely. We will continue to align our method
with the latest research in this space as it evolves.

3.3 Back-End

The back-end subsystem refers to the servers and associated infrastructure re-
sponsible for hosting and delivering web content to end-user devices. Esti-
mating the energy consumption and carbon emissions of the back-end can be
approached in two ways:

The first approach mirrors the methodology used for the front-end. This in-
volves conducting an interactivity test on the front-end while simultaneously
recording metrics from the back-end infrastructure. The same energy consump-
tion functions described in Section 3.1 are applied, with the exception of screen
energy consumption, as servers typically do not have screens attached. However,
this approach requires the application to be tested in a private development or
test environment to avoid noise from external requests. For accurate results,
the test environment must closely resemble the production environment, which
may not always be feasible due to technical constraints. Additionally, this ap-
proach requires specialised tools capable of measuring the energy consumption
of various back-end processes during the interactivity test. One such tool is
Cardamon Core [citation needed].

The second approach, which is described in detail in this section, involves using
metrics gathered from the production environment over the period of interest.
Most cloud platforms provide details about the servers provisioned (e.g. in-
stance type, number of virtual CPUs) and record basic metrics such as CPU
utilisation and network traffic. These metrics can be used to estimate energy
consumption using various component models (see later sections). Importantly,
this approach is not limited to cloud platforms. As long as metrics are be-
ing gathered, the same methodology can also be applied to on-premises data
centres. Many modern on-premises setups include monitoring tools that track
server performance and resource usage, enabling similar estimations of energy
consumption and carbon emissions. Unlike the front-end approach, this method
relies on historical data spanning the entire reporting period, which is typically
several weeks or months, and accounts for all activity on the site during that
time.

Before we detail the model we must first address the fact that servers are often
shared between multiple guests. In the case of dedicated hardware, the number
of other guests is simply assumed to be zero. However, in most cases, servers are
shared among multiple residents through virtualisation. Virtualisation allows a
single server to divide its resources (CPU, memory, storage, etc.) among it’s
residents. When allocating resources to individual guests, the total resources
available to the server are reserved and divided accordingly. For example, RAM
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and storage are often divided into gigabyte chunks, while CPUs are divided
into virtual CPUs (vCPUs). Each vCPU is roughly equivalent to a single CPU
thread. For instance, Intel’s Xeon Gold 5418Y processor has 24 cores, with each
core supporting two independent threads. This means the processor is capable
of supporting 48 vCPUs.

It is not always known how many other guests a server is shared with but it can
be assumed that a server is shared with other residence by looking at statistics
for average server utilisation in typical data centres [citation needed]. Armed
with this information we can now begin describing the backend model starting
with CPU utilisation:

3.3.1 Server CPU Utilisation

Uλg =

(
N −K

N

)
Ag (15)

Uλs =

(
K

N

)
As (16)

Ut = Uλg + Uλs (17)

where: Uλg = guests proportion of the servers total CPU utilisation.
Uλs = your proportion of the servers CPU utilisation.
Ut = total server CPU utilisation.
Ag = average server utilisation in data centre.
As = average utilisation of your instance.
N = number of vCPU the reference server can accommodate.
K = number of vCPU your instance has.

3.3.2 Server CPU Power

Pcpu =

active︷ ︸︸ ︷
λufcpu(Ut)−

idle︷ ︸︸ ︷
fcpu(0) (18)

where: Pcpu = active CPU power consumption that you are responsible for.
λu = Us/Ut ; proportion of CPU utilization you are responsible for.
fcpu = CPU power curve.
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3.3.3 Server Network Adaptor Power

Pnet =

(
Dt

Dtr

)
P a
net (19)

where: Pnet = power consumption of network adaptor during data transfer.
Dt = number of bytes transferred.
Dtr = data transfer rate in bytes per second.
P a
net = power consumption of network adaptor during transfer.

3.3.4 Server Idle Power

Pser = λrP
i
ser + Pcpu + Pnet (20)

where: λr = K/N ; proportion of resources (number of vcpu) allocated to you
on the server.

P i
ser = idle power consumption of the server (this includes the cpu and

network adaptor idle power consumption).

4 Functions, Parameters & Assumptions

4.1 Functions

In section 3.1.1 and 3.3 we introduced the concept of energy consumption func-
tions for various pieces of hardware. This section details the functions for all
hardware components currently considered in the CWM.

4.1.1 CPU

CPU energy consumption is estimated using the Boavizta power consumption
profile model [citation needed]. This model estimates power consumption using
the following logarithmic function:

P (u) = a · ln(b · (u+ c)) + d (21)

where: P (u) = Power consumption (W) at utilization u (percentage).
a, b, c, d = Coefficients specific to CPU architecture and TDP.

This power consumption profile captures the non-linear relationship between
CPU utilisation and its power consumption. The coefficients a, b, c and d define
the shape of the power curve.

We obtain these coefficents by using non-linear regression against example so-
lutions provided by the TEADS Thermal Design Power (TDP) scaling factor
table [citation needed]:
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TDP scaling factors

u 0% 10% 50% 100%

P (u) 0.12 0.32 0.75 1.02

4.1.2 Network Adapter

In progress

4.1.3 Screen

Screen energy depends very much upon screen technology. For instance, LED
screen energy depends upon the colour being rendered [citation needed] ]whereas
LCD screens colour makes neglible difference [citation needed].
So to calculate screen energy we need to make some assumptions based on the
device type (mobile or desktop) what is the likelihood that screen is LED or
LCD.
For LCD screens we use a baseline energy draw of ¿¿¿¿¿¿.
For LED screens we calculate the colour profile by taking snapshots of the
rendered pages and forming a timeline covering the duration of the interactivity
test. Each snapshot is analysed pixel by pixel to calculate an average pixel
colour in RGB format. We then take each of the RGB values (which range from
0 to 255) and use them estimate screen energy as cited in ¿¿¿¿¿¿¿¿¿¿ [citation
needed].

¡insert formula¿
Then, based on the device type we use statistical data to form LED:LCD weight-
ings of X:Y for mobile [citation needed] and X:Y for desktop [citation needed]
and apply these weightings to the energy calculations detailed above to form as
single screen energy estimation.

¡insert formula¿
We then additionally apply the carbon intensity of the screen location as per
the SCI.

¡insert formula¿

5 Reference Devices

Throughout this model reference devices are used to provide answers to ques-
tions related to hardware when details about the hardware are not known either
because they can’t be known - in the case of end user devices - or the information
is not made readily available - in the case of servers running within a data-centre.

In the case where the hardware is known these reference devices are not required
and data relating to the known hardware can be substituted in the CWM.
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This section describes how these reference devices are chosen and how resources
are mapped to the reference devices.

5.1 End-User Desktop

In progress

5.2 End-User Mobile

In progress

5.3 Servers

In progress

6 User Interaction

As described earlier, user interactions are the fundamental building blocks of
the CWM. When a human (or bot) visits any web page or uses any application
they are interacting with it. These user interactions can be anything from a
simple page load, to adding items to a basket, processing a purchase, reading
an article, watching a video, playing a game. We can think of the whole internet
as a series of user interactions. Given that a user interaction is the fundamental
unit of CWM, being able to run an interactivity test, we can do all sorts of
interesting things. We will highlight two main use cases.

6.1 Estimating User Journeys

We can script (or record in tools like Chrome developer tools) re-playable user
interactions, we call this an interactivity test. We can replay these scripted
behaviours and use CWM to estimate energy and emissions of the specific user
journeys. Thus, giving us the ability to consistently replay scenarios and opti-
mise. Recognising key user journeys within sites and applications and optimising
them gives development teams a great opportunity to reduce emissions. This
aligns with SCI ’per R’ functional unit.

6.2 Estimating Total Website Emissions

Given representative user analytics data we can estimate total emissions of
all end user activity. To do this we identify representative user journeys and
implement them as scriptable tests, running them across a representative sample
of pages from a website (or sub section of a site). This is useful for the purpose
of reporting end user emissions (which fall under Scope 3 in GHG protocol)
[citation needed] but the total numbers obtained are not optimisable because the
numbers are dependent on user activity which is out of our control. However,
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we can prioritise the user journeys (based on overall emissions) and use the
approach in 6.1 to optimise as per SCI.

7 Future Work
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