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Abstract

In this paper, we present the Cardamon Web Model (CWM), which
details how to apply the Software Carbon Intensity (SCI) specification
(ISO 21031) to web. This approach addresses some of the limitations we
see with single parameter proxies (e.g. cost, data transfer) enabling a
more granular measurement of the power consumption and carbon emis-
sions of websites and web applications.

We present the SCI and describe how it relates to each separate segment
of web systems; front-end, back-end and networks. We introduce granular
bottom-up approaches, presenting front and back end components with
their own distinct energy models (e.g. screen, compute, data, idle) and
discuss the challenges of expressing networks in the same way.

We then turn theory into practice describing in detail how we take these
algebraic formula and implement them physically, introducing the con-
cept of overrideable reference devices. Finally, we reframe the work in
terms of user interactions, discussing our design choice to position user
interaction as the fundamental unit block of the CWM opening
new possibilities for web emissions measurement and reduction.

Finally, we frame some of these possibilities as concrete examples describ-
ing current and future work implementing and expanding the CWM and
how it leads to granular insights and bespoke recommendations for prac-
titioner workflows.

1 Introduction

The environmental impact of digital technologies has become an increasingly
urgent concern, particularly as hardware manufacturing and energy demands

1



of digital continue to grow [1] [2] [3]. As essential components of the digi-
tal economy, websites and web applications contribute significantly to global
energy consumption and carbon emissions [4] [5]. However, accurately quanti-
fying these impacts remains challenging due to the diverse ways they are used
and the inherent complexity of web infrastructure.

In this paper, we present the Cardamon Web Model (henceforth CWM),
named after the Cardamon project [6], an Innovate UK-funded initiative fo-
cused on developing tools to assess and reduce software-related emissions. The
model is designed to estimate the power consumption and associated carbon
emissions of web activity. From measuring single page user interactions, to full
user journeys across multiple pages and entire websites.

The CWM builds upon the Software Carbon Intensity (SCI) specification
[7], taking a bottom-up approach to calculating energy consumption, rather
than a top-down methodology like that of other models e.g. Sustainable Web
Design Model (SWD) [5]. This allows for a more granular analysis of device
components that consume energy during web interactions, resulting in greater
accuracy and actionable insights.

This paper is organised as follows: Section 2 Software Carbon Intensity;
introduces the SCI specification. Section 3 The Cardamon Web Model;
describes the CWM in general terms, outlining its theoretical framework and
principles, relating it back to the SCI. Section 4 Functions, Parameters &
Assumptions; describes the energy consumption functions, constants and as-
sumptions that underpin key calculations. Section 5 Reference Devices; dis-
cusses reference devices used in the implementation. Section 6 User Interac-
tion; introduces user interaction strategies. Finally, Section 7 explores Future
Work and potential developments to extend the models use cases further ex-
panding its scope and applicability.

2 Software Carbon Intensity

The CWM builds upon the principles of the SCI specification by applying it
to the domain of web applications. The SCI is a ISO standard [7] designed
to provide a standardised methodology for assessing and comparing the envi-
ronmental impact of software. Equations (1 - 4) describes the specification in
mathematical terms.

SCI = (O +M) per R (1)

where: O = operational emissions (i.e. use-phase).
M = embodied emissions (i.e. production and disposal phases).
R = functional unit (e.g. API call, user interaction, etc).
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O = E · I (2)

where: E = energy consumed.
I = region specific carbon intensity.

M = TE · TS ·RS (3)

where: TE = total embodied emissions of the hardware.
TS = share of the total lifespan of the hardware reserved for use by the

software.
RS = share of the total available resources of the hardware reserved for

use by the software.

Expanding further we have

TS =

(
TiR

EL

)
, RS =

(
RR

ToR

)
(4)

where: TiR = the length of time the hardware is reserved for use by the soft-
ware.

EL = the expected lifespan of the equipment.
RR = the number of resources reserved for use by the software.
ToR = the total number of resources available.

Throughout this paper we relate the CWM back to this specification by using
the same terminology and mathematical notation.

3 The Cardamon Web Model

In this section we explore how the CWM extends the SCI specification, applying
it to web applications.

We start by breaking a web application into three distinct sub-systems, mod-
elling each individually to estimate their energy consumption. The sub-systems
are as follows:

• Front-end; the end-user device.

• Network; the routers, switches etc used to connect the end-user device
to the various servers used to deliver the website.

• Back-end; the computers and associated infrastructure used to host and
deliver the content to the end-user device. These are usually computers
within a data-centre.
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Operational and embodied emissions are calculated for each sub-system during
an interactivity test which is conducted on physical reference devices for the
front end.
Equation 5 shows how we reformulate the SCI from equation 1 to include these
high-level sub-systems.

SCIweb =
∑
s∈S

Os +Ms (5)

where: S = (f , n, b) = set of system components; front-end (f), network (n)
and back-end (b).

Os = operational emissions of sub-system s.
Ms = embodied emissions of sub-system s.

Let’s look at these system components in more detail, starting with the front-
end:

3.1 Front-End

To estimate the energy consumption associated with end-user devices, our model
accounts for the diversity among end user devices by categorising them into dis-
tinct categories such as desktop, mobile, and others. Each category represents
a broad classification of devices that share similar characteristics in terms of
hardware and usage patterns.

For each category, we define a reference device that serves as a representative
model (see section 5). These reference devices are further decomposed into their
constituent hardware components, such as the CPU, network adapter, screen,
and others. Each hardware component has an associated energy consumption
function which takes as input a set of metrics specific to the component (CPU
utilisation, data transfer etc).

Metrics for each component are gathered directly from the reference devices
during an interactivity test in which a set of actions are performed on the web
page. This aligns with the functional unit R in the SCI framework.

Interactivity tests represent a user interaction, a behaviour. They can be con-
fined to a single page or span across multiple pages. This design choice effectively
makes an interaction with any portion of a single page the fundamental building
block of CWM. These blocks of interaction can be tested independently as single
page measurements but also pieced together to model specific user journeys as
well as entire websites and web applications by identifying representative pages
and interactions that capture the app’s overall functionality.

Once metrics have been gathered during the interactivity test we can use them
as parameters to our component energy models to estimate the breakdown of
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system energy. We can then optionally use this information along with user
analytics to scale the estimated energy consumption by the number of visits
of that type originating from each device category, in each region - building a
representative estimation of end user emissions.

Lets begin describing this method mathematically from the SCI specification.

SCIf = Of +Mf (6)

where: Of = total operational emissions across all end-user devices.
Mf = total embodied emissions across all end-user devices.

To apply the front end portion of the CWM to the SCI specification we must
unpack both the operational and embodied emissions terms (Of and Mf re-
spectively).

3.1.1 Operational Emissions

Expanding the operational emissions term Of to include each device category
and scaling by the number of visits results in:

Of = If
∑
d∈D

hd(Ef,d + Ei,d) (7)

where: If = average carbon intensity across all end-user devices.
hd = hits (visits) originating from device category d over reporting

period.
Ef,d = energy consumption of the d’th category of user-device.
Ei,d = idle energy consumption during the interactivity test.
D = set of user device categories (e.g. mobile, desktop).

Even in this form, the connection to the SCI specification is still very clear. The
terms I and E from equation 2 are present but have been expanded in the case of
energy consumption to include idle consumption Ei and active consumption Ef .

We can further expand these terms like so:

Ei = t · ei (8)

where: t = elapsed time of the interactivity test.
ei = idle energy consumption of the reference device for the category

under consideration.

To expand the active energy consumption we must include the hardware com-
ponents considered for each device category and the metrics gathered for those
components during the interactivity test we can:
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Ef =
∑
c∈C

fc(Mc) (9)

where: C = set of hardware components {CPU, networkadaptor, ...}.
fc = energy consumption function for component c.
Mc = metrics associated for component c.

User analytics often contains information about where, geographically, each visit
to the web page originated from. This data can be used to calculate the average
carbon intensity across all visits. However, in the absence of this user analytics
data the global average carbon intensity can be used instead.

If =
∑
r∈R

qrIr (10)

where: q = proportion of views originating from region r.
I = carbon intensity of region r during the test.
R = Set of all geographical regions.

3.1.2 Embodied Emissions

Mf = t
∑
d∈D

hdmd (11)

where: t = elapsed time of the interactivity test.
hd = hits (visits) originating from device category d over reporting pe-

riod.
md = embodied emissions rate of end-user device category d.
D = set of user device categories (e.g. mobile, desktop).

Equation (11) shows how the total embodied emissions of end-user devices is
calculated in the CWM. Our formulation differs from that of the SCI specifi-
cation but is completely compatible with it when we expand the definition ofmd.

Using the terminology defined in equations 3 and 4 and making the assumption
that during the interactivity test the device is used exclusively for that task we
can expand md as follows:

md = TEd

(
TiRd

ELd

)
RS (12)

Under the assumption that the device is used exclusively for the purpose of
rendering the web page during the interactivity test equation 12 simplifies to:

md = TEd

(
TiRd

ELd

)
(13)
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It is important to note that the CWM in it’s current form is likely to overes-
timate the embodied emissions of the front-end due to the above assumption.
Modern devices are likely to be performing many other tasks whilst rendering
a web page.

3.2 Network

Network infrastructure presents unique challenges. With front-end and back-
end subsystems we have access to usage metrics for the constituent hardware
components so they can be modelled bottom-up. With networks the route that
data packets take is usually non-deterministic and we very rarely have access
to the hardware data because most of the infrastructure is not accessible. For
instance with undersea cables, switches, routers, internet exchange points etc.
Consequently, we use a top-down modelling approach to estimate energy con-
sumption of networks.

To model the energy consumption of the network infrastructure, we rely on esti-
mates derived from academic research and established models. One such model
is the Sustainable Web Design model [5], which provides an estimate of the en-
ergy consumed during data transfer over the global networking infrastructure.
This model calculates energy consumption by dividing the total estimated en-
ergy consumption of the global networking infrastructure (310 TWh per year
[11]) by the total estimated data transfer of the internet (5.29 ZB per year [12]).
This results in an average energy consumption of:

0.059 =

(
310× 109

5.29× 1012

)
(14)

We acknowledge the complexity of network emissions estimations and the limi-
tations of an energy intensity approach i.e. ’emissions per byte’. In the absence
of an accepted standard for network emissions we chose to adopt this approach
rather than ignore network emissions completely and discouraging data transfer
optimisation. We will continue to align our method with the latest research in
this space as it evolves.

3.3 Back-End

The back-end subsystem refers to the servers and associated infrastructure re-
sponsible for hosting and delivering web content to end-user devices. Esti-
mating the energy consumption and carbon emissions of the back-end can be
approached in two ways:

3.3.1 Measuring user interaction tests

The first approach mirrors the methodology used for the front-end. This in-
volves conducting an interactivity test on the front-end while simultaneously
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recording metrics from the back-end infrastructure. The same energy consump-
tion functions described in Section 3.1 are applied, with the exception of screen
energy consumption, as servers typically do not have screens attached. However,
this approach requires the application to be tested in a private development or
test environment to avoid noise from external requests. For accurate results,
the test environment must closely resemble the production environment, which
may not always be feasible due to technical constraints. Additionally, this ap-
proach requires specialised tools capable of measuring the energy consumption
of various back-end processes during the interactivity test. One such tool is
Cardamon Core [16].

3.3.2 Measuring overall activity

The second approach, which is described in detail in a separate paper, involves
using metrics gathered from the production environment over the period of in-
terest. Most cloud platforms provide metadata about the servers provisioned
(e.g. instance type, number of virtual CPUs) and record basic metrics such
as CPU utilisation and network traffic. These metrics can be used to esti-
mate energy consumption using various component models. Importantly, this
approach is not limited to cloud platforms. As long as metrics are being gath-
ered, the same methodology can also be applied to on-premises data centres
couple with a technique to handle the inherent uncertainty with shared cloud
resources. Many modern on-premises setups include monitoring tools that track
server performance and resource usage, enabling similar estimations of energy
consumption and carbon emissions. Unlike the front-end approach, this method
relies on historical data spanning the entire reporting period, which is typically
several weeks or months, and accounts for all activity on the site during that
time.

4 Functions, Parameters & Assumptions

4.1 Functions

In section 3.1.1 we introduced the concept of energy consumption functions for
various pieces of hardware. This section details the functions for all hardware
components currently considered in the CWM.

4.1.1 CPU

CPU energy consumption is estimated using the Boavizta power consumption
profile model [8]. This model estimates power consumption using the following
logarithmic function:

P (u) = a · ln(b · (u+ c)) + d (15)
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where: P (u) = Power consumption (W) at utilization u (percentage).
a, b, c, d = Coefficients specific to CPU architecture and TDP.

This power consumption profile captures the non-linear relationship between
CPU utilisation and its power consumption. The coefficients a, b, c and d define
the shape of the power curve.

We obtain these coefficents by using non-linear regression against example so-
lutions provided by the TEADS Thermal Design Power (TDP) scaling factor
table [8]:

TDP scaling factors

u 0% 10% 50% 100%

P (u) 0.12 0.32 0.75 1.02

4.1.2 Network Adapter

To calculate network adapter energy we take active and idle draw numbers from
the reference devices, the transfer rate that the network adapter is capable of
sending/receiving and the amount of data sent to a device.

Pnwa = (Nactive · (B/Nt)) + (Nidle · (Ut − (B/Nt))) (16)

where: Nidle = Network adaptor idle energy

Nactive = Network adaptor active energy

Nt = Network adaptor transfer rate

Ut = The amount of time of the user interaction

B = megabytes transferred to device

Here we have that B/Nt is the amount of time the network adapter is active,
factoring that by the active power draw Nactive that gives the amount of en-
ergy consumed by the adaptor whilst active. Then the inactive time is the user
interaction length minus the active time which is factored by the network idle
power Nidle. These together give us the total energy consumed by nw adapter
when idle during the interactivity test. We apply the same approach to both
front and back end.

There is an assumption we are making that an actor is responsible for the net-
work adapter being turned on (idle) for the whole period of the interactivity
test. This could be questioned when in reality it is likely that nw is being used
by other applications during that time. We have assumed this because we lack
data. This could be a topic of future work but we also note that our observations
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are that data adapter energy is neglible when compared with other components
in the system.

4.1.3 Screen

Screen energy depends on two factors: The colour profile of the rendered image
and the technology used for rendering.

For the purposes of the Cardamon model we consider the two most prominent
technologies on the market today: LED and LCD.

Because of the ways these two technologies work LED displays consume differ-
ent amounts of energy depending on the colours they render. Lighter images
consume more energy because the screen must mix red, green and blue channel
to create the desired colour. However, LCD displays typically exhibit little dif-
ference in energy consumption when rendering different colours.

The Cardamon model uses the colour profile of the webpage, and the probability
that it is being rendered on an LED display, to estimate the energy consumption
of the screen.

Pscr = Pled + Plcd (17)

Pled = Uled ·
(
Pmin
led + vcol ·

(
Pmax
led − Pmin

led

))
(18)

Plcd = (1− Uled) · P pow
lcd (19)

where: Pled = Power consumed by LED display.

Plcd = Power consumed by LCD display.

Pmin
led = The min power consumption of the LED reference device.

Pmax
led = The max power consumption of the LED reference device.

P pow
lcd = The power consumption of the LCD reference device.

Uled = The proportion of LED displays for the current device category.

vcol = The colour profile score [0− 1] of the webpage.

To calculate the colour profile score for a webpage we first obtain the average
colour by averaging the red, green and blue channels of all pixels. This is then
scaled by the power factor for each channel. The pixel power of LED tech-
nologies is dependent on the specific manufactured screen but the research into
different devices is consistent [17] [18] [19] that red light is comparable but less
power than green which in turn is less than blue. We use blended weights from
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three different physical screens to obtain the power factors detailed below.

Note, depending on the implementation of any tooling, we may need to account
for the alpha value for opacity also. If calculating directly from the rendered
browser DOM then background pixels would also need to be considered. A
simple solution to this is by calculating the RGB from a screenshot where the
opacity is baked into the pixel RGB values.

vavg = (kr · Cr) + (kg · Cg) + (kb · Cb) (20)

vmax = (kr + kg + kb) · 255 (21)

v =
vavg

vmax
(22)

where: vavg = Score of average pixel

vmax = Maximum score possible (score for white pixel)

kr = Power factor of red LEDs = 0.897

kg = Power factor of green LEDs = 1.0

kb = Power factor of blue LEDs = 1.757

Cr = Value for red channel of average pixel

Cg = Value for green channel of average pixel

Cb = Value for blue channel of average pixel

5 Reference Devices

Detailed information about the devices employed in the use of a website are
either difficult or impossible to know. For instance, which end user devices are
used to access a website or application? They are numerous and the device
landscape is ever changing. In the case of servers running within a data-centre
the information is possible for the vendor to get but most often not made readily
available.

That said, we can always do the best job possible with the data available and
for the data and physical devices we don’t have access to we can use sensible
reference devices. In both the end user and server (data centre) cases, CWM
uses reference devices to provide data for device hardware where it is not avail-
able.

These reference devices are crucial to progress. The industry needs to support
behavioural change and place relevant energy and carbon data into practitioner
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workflows, to influence more sustainable decision making. Without reference de-
vices this is simply not possible, perfect data is not available though we expect
this will improve (e.g. through consumer pressure and regulation). Reference
devices unlock immediate opportunity to make progress now and begin to posi-
tion information with those making decisions (creative, strategic and technical).
They will always be required to some extent (e.g. in the case of end user device
proliferation).

In cases where the hardware is known, reference devices are not required and
data relating to the known hardware can be substituted in the CWM.

This section describes how these reference devices are chosen and how resources
are mapped to the reference devices.

For embodied data we use specific data sheets where available or the reference
device as a proxy where not. For operational data we take the utilisation met-
rics (as described in the previous section), which can be run on any device,
mapping them as inputs to the relevant operational energy component model,
as described in previous sections.

Note, the reference devices detailed below are examples and non-exhaustive, this
repository is completely extendable. Devices and accompanying data sheets can
be added over time and blended together to be more representative of real world
conditions. For this paper, we present just one example for each but in imple-
mentation this is flexible.

5.1 End-User Desktop

Some modern desktops have the screen and desktop built in to the same device.
We have chosen to present a more traditional desktop setup of a computer with
a monitor (screen) as separate devices. Example reference device(s)

Model Description Min (W) Max (W)

Philips, 272B7QPJEB (LCD) [9] 27” 2560 x 1440 0.30 19.68

Alienware, AW2725D (OLED) [10] 27” 2560 x 1440 0.30 25.30

5.2 End-User Mobile

There are billions of mobile phones worldwide increasing each year [13] with
many different model types. Below is an example reference device for a mobile
phone that can be easily augmented with others or replaced.
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Model Description Idle (W)

TBD Mobile Phone TBD

5.3 Servers

There are less servers worldwide than end user devices [citation?] but still many
different models. The exact same approach applies to servers.

Model Description Idle (W)

PowerEdge R660xs [14] [15] Low Performance 127.1

PowerEdge R660xs [14] [15] Typical Performance 138.7

PowerEdge R660xs [14] [15] High Performance 201.8

We note this represents power from everything inside the rack server (including
compute, storage, memory). The data centre’s Power Usage Effectiveness (PUE)
can be used to factor the infrastructural overhead on top of the IT hardware.

6 User Interaction

As described earlier, user interactions are the fundamental building blocks of
the CWM. When a human (or bot) visits any web page or uses any application
they are interacting with it. These user interactions can be anything from a
simple page load, to adding items to a basket, processing a purchase, reading
an article, watching a video, playing a game etc. We can think of the whole
internet as a series of user interactions. Given that a user interaction is the
fundamental unit of CWM, being able to run an interactivity test, we can do
all sorts of interesting things. We will highlight two main use cases.

6.1 Estimating Total Website Emissions

Given representative user analytics data we can estimate total emissions of end
user activity across a site. To do this we identify representative user journeys
and implement them as scriptable tests, running them across a representative
sample of pages from a website (or sub section of a site). This is useful for
the purpose of reporting end user emissions but the total numbers obtained are
not optimisable because the numbers are dependent on user activity which is
not directly in our control. However, we can prioritise the user journeys (based
on overall emissions) and use the approach in 6.1 to optimise as per SCI. By
monotiring system metrics during an interaction we build on the ideas of the
Sustainable Web Design Model, which rates pages using data based on page
loads (only), by unlocking insights for more involved user interactions. Out of
the box our own implementation of the CWM runs a simpe scroll test mimicing
a basic user interation on a single page for the purpose of generic footprinting
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but the full power of the CWM is realised when bespoke user interactions for a
given product are modelled to optimise specific user journeys.

6.2 Estimating User Journeys

We can script (or record in tools like Chrome developer tools) re-playable user
interactions, we call this an interactivity test. We can replay these interactions
and use CWM to estimate energy and emissions of specific user journeys. Thus,
giving us the ability to consistently replay scenarios and optimise user journeys.
Recognising key user journies within sites and applications, then optimising
them gives product development teams a great opportunity to reduce emissions.
This aligns with SCI ’per R’ functional unit.

7 Future Work

This paper lays the foundation for an approach to applying the SCI to web
applications. There is much more work to be done in this area and we are
continuing our research. Here are some of the areas we are focusing to build on
this initial work.

• Ratings A power based rating system for all web activity that aligns with
current industry rating systems [In progress]

• Reference devices Extending device distributions. The CWM can easily
support multiple reference devices in each category and even more cate-
gories (e.g. tablet, TV) [Planned]

• CDNs Many sites deploy static assets into Content Delivery Networks so that
users can access data closer to their location. These are network deployed
storage optimised servers that we model within CWM back end model
and could improve with more granular data on CDNs.

• Network We plan to conduct research into the power draw of different net-
work technologies (top down) and map device types to weighted distribu-
tions to obtain a more nuanced number for network [Planned]

• GPU We plan to bring GPU into this model allowing us to better handle
GPU intensive applications. [Planned]

• RAM Initial research suggest that RAM energy is much less variable than
CPU with utilisation level, so in the current model RAM is ”covered” into
idle energy. There is a small improvement to verify our assumption or
to model RAM energy specifically. Regardless of which avenue is taken
for energy we will improve on the embodied emissions modelling by in-
cluding RAM in the component modelling for embodied resource share [In
progress]
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• Component models The operational energy component models could also
be improved by extending research into the individual component models.
[Unplanned, academic collaboration called for]

• Page sampling Work has already begun on demonstrating how to take this
approach, coupled with statistical methods, and extrapolate measure-
ment samples to more accurately estimate entire large scale websites. [In
progress]
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